View Publication

Abstract

Consider a scenario where a player chooses an action in each round t out of T rounds and observes the incurred cost after a delay of dt rounds. The cost functions and the delay sequence are chosen by an adversary. We show that in a non-cooperative game, the expected weighted ergodic distribution of play converges to the set of coarse correlated equilibria if players use algorithms that have "no weighted-regret" in the above scenario, even if they have linear regret due to too large delays. For a two-player zero-sum game, we show that no weighted-regret is sufficient for the weighted ergodic average of play to converge to the set of Nash equilibria. We prove that the FKM algorithm with n dimensions achieves an expected regret of and the EXP3 algorithm with K arms achieves an expected regret of even when D = ΣTt=1 dt and T are unknown. These bounds use a novel doubling trick that, under mild assumptions, provably retains the regret bound for when D and T are known. Using these bounds, we show that FKM and EXP3 have no weighted-regret even for dt = O (t log t). Therefore, algorithms with no weighted-regret can be used to approximate a CCE of a finite or convex unknown game that can only be simulated with bandit feedback, even if the simulation involves significant delays.

Authors
Ilai Bistritz, Zhengyuan Zhou, Xi Chen, Nicholas Bambos, Jose Blanchet
Publication date
2022
Journal
Journal of Machine Learning Research
Volume
23
Issue
139
Pages
1-43